Blog

Hurra!

Posted by Chandler Slavin on Oct 16, 2012 5:48:00 PM

Hey!

I hope everyone had a lovely 4th of July weekend! Go America!!!

Sooo I have some exciting news!

First, my rebuttal to the NYT’s anti-clamshell article was featured in Greener Package’s newsletter last week as a news HEADLINE!!! Check it out here with the new comments! I especially like the BOOOYYYAAAA one, ha!

And last but not least, our press release discussing our Bio Resin Show N Tell for Pack Expo west is featured on the Supplier News section of Greener Package! Check it out here!

Alright, I apologize for today’s post of self-proclamation; still catching up from this weekend’s festivities! BUT I just booked my Dallas trip for the Sustainable Packaging Coalition’s fall meeting! I hope to see some of you there!

To come: Making a Sea Change summary (Ocean Conservancy re: ocean debris), summary of Dr. Narayan’s science of bio-based/biodegradable resins PPT; and, much much more!

Read More

It Aint Easy Being Green

Posted by Chandler Slavin on Oct 16, 2012 5:46:00 PM

Hey guys!

Did you see this terribly sad article detailing the mass extinction of our oceans?!?! Goodness gracious sometimes being required to read all things about the environment is such a bummer! I will discuss the truth of marine debris in tomorrow’s post, because as per this article, it is a rather timely topic! Here is a picture of me petting a dog shark at the zoo, which speaks to my utter LOVE of our fine finned fellas!



AND, I have updates on PET thermoform recycling as per a colleague who attended Walmart Canada’s SVN meeting today. EXCITING!

In early June I was contacted by the editor of Plastics Business Magazine, which is a quarterly publication for plastics processors supported by the Manufacturers Association of Plastics Processors. She found me through Twitter, compliments of the Packaging Diva, who is a super successful independent packaging professional with like thousands of Twitter followers—that’s right, thousands. Anyway, the editor was looking for a packaging converter with a bit of sustainability know-how to write an article on sustainable packaging choices, specifically geared towards plastics molders, and asked me as per the Diva’s suggestion! Thanks ladies!

The editor explained that the magazine is targeted to upper-level executives/management operations staff, providing industry trends, strategies, etc. Because a lot of blow molders are involved in some type of post-mold packaging for their customers, she thought it was important to address sustainable packaging options, as this is obviously a trend with some staying power.

AND she gave me 1,500 words, which is by far the most space I have gotten in a print publication EVER, yippee!

Check out my first draft below. It is a bit academic, but I didn’t know how else to handle such a complicated topic as sustainable packaging in causal discourse.

It Aint Easy Being Green

Chandler Slavin, Sustainability Coordinator, Dordan Manufacturing Co. Inc.

“Sustainability” is a concept commonly defined as development that “meets the needs of the present without compromising the ability of future generations to meet their own needs.” Since the early nineties, “sustainability” as concept has been integrated into how we understand different process of production and consumption, products and services.

As the Sustainability Coordinator of a medium-sized family owned and operated plastic thermoforming company, I believe my employment speaks to the extent to which “sustainability” has percolated industry. By taking an informed, systems-based approach to sustainability, I believe plastic processors can develop truly sustainable packaging options for their customers. What follows is a discussion of some of the tools, materials and resources available to those that wish to embark on the journey towards sustainable packaging. It is important to understand, however, that there is no “silver bullet” when discussing sustainability; compromise is required whenever assessing how certain materials or processes will inform the overall environmental and economic performance of a given product or service.

Life cycle analysis is a popular approach to understanding the environmental requirements of different products and services. By considering the entire life cycle of product—from material extraction to production, distribution, and end of life—one can begin to understand its sustainability profile. This type of assessment provides quantified, scientific data, which can be used to facilitate sustainability improvements across the supply chain. Discussion of the Sustainable Packaging Coalition’s life-cycle based, comparative packaging assessment software COMPASS will make clear the importance of LCA and how such intelligence can aid in sustainability improvements in packaging systems.

COMPASS s a design-phase web application that provides comparative environmental profiles of packaging alternatives based on life cycle assessment metrics and design attributes. Created by the Sustainable Packaging Coalition (hereafter, SPC)—an industry-working group dedicated to a more environmentally robust vision for packaging—this tool provides the environmental data needed to make informed packaging design decisions early in the developmental process. COMPASS assess packages on resource consumption (fossil fuel, water, biotic resource, and mineral), emissions (greenhouse gas, human impacts, aquatic toxicity, and eutrophication), and attributes such as material health, recycled or virgin content, sourcing, and solid waste.

Dordan began its subscription to COMPASS in 2010 in response to inquiries from clients into the sustainability of one material vs. another, one design vs. another, etc. Because COMPASS contains life cycle impact assessment data (LCIA) from raw material sourcing/extraction, packaging material manufacture, conversion, distribution and end of life, it details the life cycle impacts of different packaging systems in a comparative format; this allows the practitioner to understand the environmental performance of package A vs. package B, which allows for informed design decisions that results in quantified marketing claims.

To utilize COMPASS, one needs the following information: The weight of the various packaging material constituents of the primary and secondary packaging for the existing and proposed packaging; the conversion process i.e. calendaring with paper cutting vs. thermoforming; and, the data set i.e. US vs. EU vs. CA (end of life data is geographically specific). COMPASS data output consists of colored bar graphs corresponding to the existing and proposed designs, indicating the emissions generated and resources consumed as listed above.

COMPASS was created by stakeholders in industry, academia, NGOs and environmental organizations and funded in part by the US EPA. The LCIA data is taken from the two public life cycle databases available, the US Life Cycle Inventory Database and Ecoinvent, a Swiss life cycle database. This tool should be incorporated into the package development process in order to facilitate more sustainable designs that allows for informed environmental marketing claims. Examples of claims Dordan has made as result of COMPASS utilization includes: “25% reduction in GHG equivalents emitted throughout life cycle when compared with previous package” or, “40% reduction in biotic, mineral, and water resources consumed when compared with previous package.”

In addition to investing in a life cycle based, systems approach to packaging sustainability as manifest through subscription to COMPASS, it is important to invest in industry-specific sustainability R&D. Because each industry is unique in its demands and applications, it is difficult to speculate on what type of sustainability service will resonate best with each demographic. As thin-gauge thermoformers, Dordan found that “bio-plastics” were something in need of investigation because of their feedstock/end of life sustainability implications. By being proactive and sampling each available bio-based/biodegradable/compostable resin as it came to market, Dordan was able to provide its clients with a variety of options that may aid in the attainment of their sustainable packaging goals. Resins sampled include: PLA, PLA & Starch, Cellulous Acetate, PHA, TerraPET, Aeris InCycle. A comparative spec sheet detailing each resins’ physical properties, environmental profiles and cost as understood through density and yield was provided alongside the thermoformed samples, allowing for a holistic representation of this new class of resins.

Don’t let your efforts stop with industry-specific sustainability R&D, however: sustainability is a complicated concept and one that requires full time investigation and participation. In order for plastics processors to capitalize on packaging sustainability in the context of environmental and economic savings, it is helpful to divert resources to sustainability education. Dordan began its sustainability education by joining the SPC, which offered a variety of research crucial to discussions of sustainability. Research available includes: Environmental Technical Briefs of Common Packaging Materials, Sustainable Packaging Indictors and Metrics, Design Guidelines for Sustainable Packaging, Guide to Packaging Material Flows and Terminology, Compostable Packaging Survey, etc.

In joining an industry alliance dedicated to developing more sustainable packaging systems, Dordan was introduced to all the issues that concerned not only the thermoforming but also larger packaging industry; in doing so, it illuminated the obstacles faced and the opportunities available. A discussion of how Dordan developed a clamshell recycling initiative based on insights generated from SPC participation will make clear what is encouraged with sustainability education.

At Dordan’s first SPC meeting it became clear that very few types of consumer product packaging is recycled as per the FTC Green Guides’ definition. Upon this discovery, Dordan aggressively began investigating why thermoformed packaging, like the clamshells and blisters it manufacturers, is not recycled in 60% or more American communities; therefore, couldn’t be considered recyclable. After performing extensive research in this area, I was invited to be the co-lead of Walmart Canada’s PET Subcommittee of the Material Optimization Committee; this looked to increase the diversion rate of PET packaging—bottle and thermoform grade—post consumer. My involvement with stakeholders in PET recovery prompted multiple speaking invitations, allowing Dordan to achieve industry thought leadership status. In investigating issues pertinent to the sustainability of our industry, in this case recycling, Dordan was able to add to the constantly evolving dialogue around sustainability; this not only increased Dordan’s exposure within the industry, but allowed for said exposure to be one of genuine commitment to the sustainability of the thermoforming industry.

I was approached to write an article detailing what sustainable packaging is. According to the SPC, sustainable packaging: meets market criteria for both performance and cost; is sourced, manufactured, transported, and recycled using renewable energy; is manufactured using clean production technologies and best practices; is made from materials healthy in all probable end of life scenarios; is physically designed to optimize materials and energy; and, is effectively recovered and utilized in biological and/or industrial closed loop cycles. While this definition is conceptual correct, I argue that it does not reflect the current reality of sustainable packaging: all commodities consume resources and produce waste during production, distribution, and at end of life. Our jobs as packaging professionals, therefore, is to educate ourselves about the trends, terminology, materials and tools available, so we can work towards achieving our definition of sustainable packaging. Only through education, supply chain collaboration and industry initiatives can we begin to develop truly sustainable packaging systems that meet the needs of the present without compromising the ability of future generations to meet their own needs.

Read More

Composting, Bio Resins, and what Walmart Private Brand suppliers should require from their suppliers

Posted by Chandler Slavin on Oct 16, 2012 4:55:00 PM

Helllllllooooo all! Guess what: Dordan is now tweeting! I have always been a little slow to jump on the latest and greatest techie endeavor: personally I didn’t join facebook until I was studying abroad and had strep throat and was feeling a little… disconnected. Same goes with Twitter. However, as the marketing manager at Dordan, I have been researching like crazy on how to create and nourish an integrated marketing campaign; and, everything I have read emphasizes the need for a presence in the social networking sphere of our ever-expanding media cosmos. So I began tweeting, and it’s really fun! In the last two days, Dordan has 15 new followers—most of which are green organizations or packaging publications—and its super cool because I can read all about their efforts and they can read all about Dordan’s. Soooo, now that I have jumped on the bandwagon, “Follow us on Twitter”!

Alright, all sorts of exciting stuff at Dordan!

We have begun composting our food and yard waste. Check out our cute compost bins, which are located in the cafeteria and the office, to collect food scraps and other compostable materials, like paper towels.



If you are trying to decide what kind of bin to get to collect food scraps for composting, I would suggest something with a lid, to keep the smell in and allow ease of disposal. Also, it is convenient to have something that locks the bag in place, which again, allows for easier disposal and maintenance.

So far everyone at Dordan is doing a great job segregating out the compostable material (organic matter) from the non-compostable material, like glass, aluminum, and animal products. We had a bit of a hiccup because I thought we could compost everything food related, except meat and bones, which resulted in someone discarding cheese in the bin and boy was it stinky!!! So now the compost bins are accepting no animal products, including dairy, and the office is happy. Hurray!

While we have only been collecting food scraps for composting for a week, we already have a little pile, which I have mixed with yard waste (fall is a great time to start composting!), and am observing daily. Yesterday I stuck my hand into the composter (not the decaying matter) and felt heat, which I think is a good sign. AND, because Dordan has sampled some bio-based and certified “OK to Home Compost” resins, we tossed some scrap into the mix, to see if the material does in fact biodegrade in the marketed time. Check out the photo:



Obviously you can’t see much, but our modest but growing compost pile is under the green bio-based/compostable material. I will be sure to update you with pictures as the material begins to break down. Neat!

Ummmm Pack Expo begins next week; yikes! In preparation for our Bio-Resin Show N Tell, we have collected all pertinent information for the several alternative resins we have sampled this year, and thermoformed the material so attendees can decide for themselves what they think of the latest thermoformable bio-based/compostable resins. And, for your viewing please, check out the photos below:



This material is cellulous acetate, which means that it derives its feedstock from cellulous, as opposed to fossil fuel. It is certified to biodegrade in home compost piles and industrial composting facilities, and is classified as a paper product if sold into a country with EPR legislation on the books.

This stuff is a cornstarch-based product that is, according to the supplier, “renewable, biodegradable, home compostable, and water dispersible.” Because it can break down in water, which is crazy, it actually absorbs water from the air, which makes processing it super tricky, see:



This guy is PHA…I honestly don’t know much about PHA vs. PLA because I have not gone through the research yet. It is marketed as biodegradable in home composts, industrial composting facilities, marine environments, and basically anywhere else, like the side of the road. Crazy! It actually looks kind of cool…



Next we got a starch based resin, which is certified to biodegrade in industrial composting facilities:



Last, a PLA sample, which I don't have a picture of...but use your imagination.

So ya, I think it will be a pretty cool exhibit because not only are we actually showing the bio resins we have sampled this year, but we are presenting all sorts of crucial information, like what kind of certifications the materials have, what kind of disposal environments the materials are intended for i.e. industrial composting facility vs. marine biodegradation, price points, performance, specs, etc.

Ok, I got to go; Oh, but check out my SupplierHub blog contribution below. I haven’t received approval yet from the blog designer, so I don’t know if this will be THE blog contribution, but it’s what I came up with thus far…

It is a very exciting time for business ethics: the Milton Friedmanian notion that the only responsibility of a corporation is to increase the profit of its shareholders is now being reconstructed; thrown into the mix is a new desire for corporate responsibility—from consumers and CPGs/retailers alike—in both the social, economic, and environmental spheres.

The domestic packaging industry was first introduced to issues of sustainability with the release of the Wal-Mart Scorecard in 2006. For the first time in history, packaging was being assessed not only on aesthetics, quality, efficiency and cost, but “sustainability.” The dialogue around packaging and sustainability continued to evolve and reached new heights with the formation of the Global Packaging Project from the Global CEO Forum and other industry associations in 2008. In the summer 2010, the GPP released 52 metrics for assessing the sustainability of a package within a global dialogue, taking into consideration those packaging metrics found in the Walmart Packaging Scorecard and SPC’s metrics for assessing sustainable packaging, among others.

What the GPP’s metrics make clear is the need for corporate transparency, not only from packaging suppliers, but the whole supply chain, in the context of environmental and social performance. By requiring certain sets of information from your suppliers, Private Brand suppliers to Walmart can enjoy increased ease of reporting, compliance, and performance on the Packaging Scorecard; which consequentially, will facilitate the continued assessment and therefore improvement of the Supply Chain Score.

Things you should require from their packaging suppliers:

Knowledge of Scorecard metrics: Packaging suppliers should demonstrate proficiency with the metrics of the Walmart Scorecard in order to understand how to design and manufacture the most eco-efficient package based on the specific product requirements. Private Brand suppliers should encourage that their packaging providers be well versed with the Software in order to demonstrate reduction in Scores with any new package proposal/redesign.

Documentation validating all environmental claims:

According to the FTC Green Guides, for a package to be labeled “recyclable,” “the majority of consumers/communities” must have access to facilities that recycle that type of package. If a packaging supplier claims their package is “recyclable,” documentation should be provided, like recovery rates for the packaging type via the US EPA’s MSW data.
For a package to be marketed as “reusable,” packaging suppliers should present evidence that said packaging type has a system for post consumer collection and reuse.

For a package to be marketed as “biodegradable,”/”compostable” packaging suppliers should present qualifying information, like in what disposal environment does said packaging type “biodegrade”/”compost” i.e. industrial composting facility, marine environments, etc. Depending on the disposal environment cited, proper certification should be presented i.e. ASTM D6400 for industrial composting.

Understanding of life cycle of package: Packaging suppliers should demonstrate an understanding of the life cycle impacts of their packaging designs and manufacturing processes. Life stages encouraged for consideration include: manufacture, conversion, end of life, and distribution. Tools like the SPC’s comparative packaging modeling software COMPASS allow packaging suppliers to quantify the life cycle impacts of a packaging design; as such, Private Brand suppliers should encourage their packaging suppliers to provide LCA data demonstrating consideration of their packaging’s life cycle.

With all things considered, Private Brand suppliers should encourage their packaging suppliers to be transparent and accountable for all environmental claims made, packaging produced, and distribution channels utilized. Tools like the Walmart Scorecard, COMPASS, knowledge of the FTC Green Guides, and an understanding of contemporary developments in packaging and sustainability should be considered by packaging suppliers in order to make your job as Private Brand suppliers easier in the context of packaging procurement.

Read More

Advertising, composting, and education schmorgishborg

Posted by Chandler Slavin on Oct 16, 2012 4:33:00 PM

Hello my packaging and sustainability friends!

I sound like a broken record but again, I apologize for not blogging this week; please forgive me!

I have been super busy with creating new marketing materials and restructuring our advertising mix on greenerpackage.com. Check out our new and improved Design for Sustainability white paper here: http://www.greenerpackage.com/corporate_strategy.

And my fabulous Recycling Report here: http://www.greenerpackage.com/blisters_clamshells and here http://www.greenerpackage.com/recycling.

And guess what: PlasticsNews is going to publish my recycling report in the “perspective” section. Look out for it in print in the next 3-4 weeks.

Oh and for all you Packaging World E-newsletter subscribers, look out for our Recycling Report in the August New Issue Alert, scheduled to go out tomorrow! My ad man told me that pictures of people generate more interest (and therefore clicks and leads), so I include the picture of me giving the thumbs-up sign in my ghost buster suit in the garbage during our first waste audit (the one before I got all sweaty and sad). Ha! Good times…

I don’t know if I told you guys but when Dordan was exhibiting at the Walmart Expo I met a gentleman from SupplierHub, which is this online education exchange for private packaging buyers and sellers for Walmart. Anyway he was super nice and I got him hooked on my blog (Hello if your reading this!) and now we are advertising on this site! Go Dordan!

Advertising excuses aside, the main reason I haven’t been blogging is because I have been passed the Pack Expo baton, which means I am coordinating the show for the first time ever. I was totally freaking out because I just inherited this project and I thought the due date for submitting all the order forms was August 17th but its SEPTEMBER 17th, phew! So now I can relax and resume my blogging!

Ok, enough random embellishments for the day, let’s talk sustainability!

We are going to begin construction on our composter next Tuesday, yippee! I sent an email to the woman who is helping us (also the farmer who is going to use our land to grow organics for the Woodstock community), asking if we needed to begin collecting our food waste. If so, we have real motivation to begin educating our employees about source separation; that is, segregating out the food waste from the food packaging waste, garbage, and recyclables.

As an aside, we just got in some new bio-based material to sample, which is certified “OK to home compost.” This material is unique in that it exceeds the standard 120 degrees F heat deformation temperature currently dominating the market AND can break down in ANY disposal environment, besides landfill. If this is “true,” then this is crazy cool as one of my biggest concerns with biodegradable plastic packaging is that it often doesn’t make it to its intended disposal environment, which is usually an industrial composting facility (D6400 Standard for Industrial Composting). ANYWAY I’m excited to play mad scientist and test the performance of this new material’s biodegradation by tossing it our soon to be erected compost pile. While I will not be able to determine if it completely biodegrades (no plastic particulates available after 90-180 days) because I don’t have insanely microscopic eyeballs, I will be able to determine if it breaks down until no longer visible. By conducting a test of this material’s biodegradability in our compost pile, I will be more comfortable adding it to the reservoir of resins Dordan offers our customers and prospects. So that’s pretty cool…

In regard to my work with our community schools:

I met with the co-chair of the Environmental Task Force for Woodstock School District 200 yesterday. He was super duper nice and I liked him right away! The ETF, he explained, is this organization of administrative folk, including school principals, and two student representatives, who discuss and implement different sustainability initiatives at the schools. One project they are working on this fall is an energy contest, whereby the D200 schools compete to see which one can reduce their energy use the most. They envision having this big thermometer, of sorts, which shows how much energy they have used per week compared with the previous school year. Sounds neato!

The co-chair of the ETF was also interested in having me talk about the field of sustainability as a profession in hopes of generating more interest in environmental sciences. I think this is great! I can’t believe I may be one of these people that comes into schools on “career day;” how funny!

As the meeting came to an end, I provided him with a couple suggestions for how I thought my work could enhance the goals of the ETF. I offered COMPASS tutorials so students could be introduced to life cycle analysis as a methodology for assessing the sustainability of a product or service; recycling education; and, a discussion on environmental advertising and manipulative and misinformed advertising claims. I still remember taking a class in high school called Rhetorical Analysis of Media, which introduced for the first time the idea that I was being marketed to as a consumer and encouraged an awareness and analysis of said media. It was such a cool class and I would love the opportunity to encourage this kind of reflection among students in the sphere of environmental marketing claims, as so many are, in my opinion, flirting with that fine line between reality and greenwashing. In a nut shell, I am really excited to get involved with D200 schools and help spread the love of all things sustainable!

Talk tomorrow!

Read More

Bio-based resin report!

Posted by Chandler Slavin on Oct 16, 2012 10:58:00 AM

Hello world! Today is officially the most beautiful day—the sun is shining and the weather is sweet. If I only I weren’t stuck in a cubicle…

Soooooo because I have had so many of Dordan's customers ask us about bio-based resins, I decided to compile a brief report, which details the various environmental ramifications one must consider when discussing bio-based plastics. Soon this report will be accessible on our website but because you are all so special, I have attached it below here. A sneak peak, per se. Wow I am a nerd.

Enjoy!

Bio-Based Resins: Environmental Considerations

Biodegradability is an end of life option that allows one to harness the power of microorganisms present in a selected disposal environment to completely remove plastic products designed for biodegradability from the environmental compartment via the microbial food chain in a timely, safe, and efficacious manner.[1]

Designing plastics that can be completely consumed by microorganisms present in the disposal environment in a short time frame can be a safe and environmentally responsible approach for the end-of-life management of single use, disposable packaging.[2] That being said, when considering any bio-based resin, there are some environmental considerations one must take into account. These include: end-of-life management; complete biodegradation,; its agriculturally-based feedstock; and, the energy required and the greenhouse gasses emitted during production.??

Before I expand on these concepts below, let us quickly discuss the biological processes that degradable plastics endure during biodegradation.

Microorganisms utilize carbon product to extract chemical energy for their life processes. They do so by:
    1. Breaking the material (carbohydrates, carbon product) into small molecules by secreting enzymes or the environment does it.
    2. Transporting the small molecules inside the microorganisms cell.
    3. Oxidizing the small molecules (again inside the cell) to CO2 and water, and releasing energy that is utilized by the microorganism for its life processes in a complex biochemical process involving participation of three metabolically interrelated processes. [3]
If bio-based plastic packaging harnesses microbes to completely utilize the carbon substrate and remove it from the environmental compartment, entering into the microbial food chain, then biodegradability is a good end of life option for single use disposable packaging.

End-of-life management considerations:

Because biodegradation is an end of life option that harnesses microorganisms present in the selected disposal environment, one must clearly identify the ‘disposal environment’ when discussing the biodegradability of a bio-based resin: examples include biodegradability under composting conditions, under soil conditions, under anaerobic conditions (anaerobic digestors, landfills), or marine conditions. Most bio-based resins used in packaging applications are designed to biodegrade in an industrial composting facility and one should require some type of certification or standard from material suppliers, ensuring compostability.

Unfortunately, little research has been done on how many industrial composting facilities exist in the United States and how bio-based plastic packaging impacts the integrity of the compost. However, the Sustainable Packaging Coalition did perform a survey of 40 composting facilities in the U.S., which provides some insight. According to their research, 36 of the 40 facilities surveyed accept compostable packaging. These facilities reported no negative impact of including bio-based plastic packaging in the compost. Of the 4 facilities that do not accept compostable packaging, 3 are taking certain packaging on a pilot basis and are considering accepting compostable packaging in the future. Of the facilities surveyed, 67.5% require some kind of certification of compostability i.e. ASTM, BPI, etc.

In addition, because value for composters is found in organic waste, I assume most facilities would not accept bio-based plastic packaging for non-food applications because the lack of associated food waste and therefore value. In other words, as Susan Thoman of Cedar Grove Composting articulated in her presentation at the spring SPC meeting, composters only want compostable food packaging because the associated food waste adds value to the compost whereas the compostable packaging has no value, positive or negative, to the integrity of the compost product.?

It is also important to note that because there are so few industrial composting facilities available, the likelihood that your bio-based plastic packaging will find its way to its intended end of life management environment is rare. While the idea of biodegradation and compostability for plastic packaging may resonate with consumers, the industrial composting infrastructure is in its infancy and requires a considerable amount of investment in order to develop to the point where it would be an effective and economical option to manage plastic packaging waste post consumer.

Complete biodegradability considerations:

A number of polymers in the market are designed to degradable i.e. they fragment into smaller pieces and may degrade to residues invisible to the naked eye. While it is assumed that the breakdown products will eventually biodegrade there is no data to document complete biodegradability within a reasonably short time period (e.g. a single growing season/one year). Hence hydrophobic, high surface area plastic residues may migrate into water and other compartments of the ecosystem.[4]

In a recent Science article Thompson et al. (2004) reported that plastic debris around the globe can erode (degrade) away and end up as microscopic granular or fiber-like fragments, and these fragments have been steadily accumulating in the oceans. Their experiments show that marine animals consume microscopic bits of plastic, as seen in the digestive tract of an amphipod.

The Algalita Marine Research Foundation[5] report that degraded plastic residues can attract and hold hydrophobic elements like PCB and DDT up to one million times background levels. The PCB’s and DDT’s are at background levels in soil and diluted our so as to not pose significant risk. However, degradable plastic residues with these high surface areas concentrate these chemicals, resulting in a toxic legacy in a form that may pose risks to the environment.

Therefore, designing degradable plastics without ensuring that the degraded fragments are completely assimilated by the microbial populations in the disposal infrastructure in a short time period has the potential to harm the environment more that if it was not made to degrade.

Agriculturally-based feedstock considerations:

Most commercially available bio-based resins are produced from sugar or starch derived from food crops such as corn and sugarcane.[6]Over the past few years, the use of food crops to produce biofuels has become highly controversial; the same may happen with bio-based resins. However, this is only if the scale of bio-based polymer production grows. According to Telles VP Findlen, “If the bioplastics industry grows to be 10% of the traditional plastics industry, then around 100 billion pounds of starch will be necessary, and there is no question that that will have an effect on agricultural commodities.”[7]

This sentiment is echoed by Jason Clay of the World Wild Life Fund. Because sugar is the most productive food crop[8] Clay explained, it makes an ideal feedstock for bio-based resin production; however, if all Bio-PE and Bio-PET came from sugarcane, we would need 2.5 times as much land in sugarcane. Unfortunately, this can not be done sustainably because, according to the Living Planet Report,[9] our current demand for the Earth’s resources is 1.25 times what the planet can sustain.[10] Put another way, on September 25th of this year our resource use surpassed what is sustainable. What this would mean as a financial issue is that we are living off our principle.[11]

Therefore, when considering bio-based resins, one should take into consideration the feedstock from which it is derived and the various environmental requirements that go into procuring said feedstock. While the current production of bio-based resins is not to scale to compete with sugarcane production for food, it is important to understand the environmental and social ramifications of sourcing materials from agriculturally based products.

Energy requirements and fossil fuel consumption of production:

Obviously sourcing plastics from bio-based resources as opposed to fossil fuel is an intriguing option for those looking to reduce the burden of packaging on the environment. However, if the energy required to produce bio-based plastics exceeds the energy consumed in the production of traditional resins, then the sustainability profile of bio-based plastics can be compromised.

When bio-based plastics first became commercially available, the processing technologies were not developed to the point where producing plastics from bio-based sources consumed less energy than producing traditional, fossil-fuel based plastics. However, the bio plastics industry has dramatically evolved and is now able to produce certain bio-based resins with less energy when compared with traditional resins. Natureworks Ingeo PLA (2005), for instance, is processed in such a way that it actually consumes less energy and emits fewer greenhouse gas equivalents during production when compared with traditional, fossil-fuel based resins.[12]

The Institute for Energy and Environmental Research (IFEU), Heidelberg, Germany, conducted the head-to-head lifecycle comparison on more than 40 different combinations of clamshell packaging made from Ingeo PLA, PET and rPET. Both PLA and rPET clamshells outperformed PET packaging in terms of lower overall greenhouse gas emissions and lower overall energy consumed and PLA exceeded rPET in its environmental performance.

According to the study, clamshell packaging consisting of 100 percent rPET emitted 62.7 kilograms of C02 equivalents per 1,000 clamshells over its complete life cycle. PLA clamshells emitted even less, with 61.7 kilograms C02 equivalents per 1,000 clamshells. Energy consumed over the lifecycle for 100 percent rPET clamshells was 0.88 GJ. This compared to o.72 GJ for the Ingeo 2005 resin, which is an 18% reduction in energy consumed.

Taken together, one would assume that the 2005 Ingeo PLA is a more sustainable option than traditional plastics, as manifest through this study. However, it is important to take into account the other dimensions discussed above, such as end of life management, complete biodegradation, and sustainable sourcing. By understanding the advantages and disadvantages of bio-based resins from an environmental perspective, packaging professionals can make informed material selections and truly comprehend the ecological ramifications of their packaging selections and designs.


[1] Ramani Narayan, “Biodegradability…” Bioplastics Magazine, Jan. 2009. Narayan is a professor from the Department of Chemical Engineering and Materials Science at Michigan State University.

[2] Ibid.

[3] Ibid.

[4] Ibid.

[5] See www.algalita.org/pelagic_plastic.html.

[6] Jon Evans, “Bioplastics get Growing,” Plastics Engineering, Feb. 2010, www.4spe.org, p. 19.

[7] Ibid, p. 19.

[8] 1-2 orders of magnitude more calories per ha than any other food crop. Information taken from Jason Clay’s presentation, “Biomaterial Procurement: Selected Resources,” at the Sustainable Packaging Coalition’s spring meeting in Boston.

[9] The Living Plant Report is a biannual analysis of the carrying capacity of the globe compared with resource consumption: Population x consumption > planet.

[10] Clay, SPC spring meeting presentation.

[11] Ibid.

[12] M. Patel, R.Narayan in Natural Fibers, Biopolymers and Biocomposites.

Read More

SUBSCRIBE TO OUR BLOG:

LATEST POSTS: