Blog

Video: Dordan's trialed algae plastic now foam in sneakers

Posted by Chandler Slavin on Jul 29, 2020 2:24:09 PM

 

Dordan thermoformed ALGIX's algae plastic in 2010, as part of its sustainable plastics research. The material was comprised of 15% algae, 85% PP. The algae acted as a filler, reducing the amount of plastic needed per application.

Read More

It Aint Easy Being Green

Posted by Chandler Slavin on Oct 16, 2012 5:46:00 PM

Hey guys!

Did you see this terribly sad article detailing the mass extinction of our oceans?!?! Goodness gracious sometimes being required to read all things about the environment is such a bummer! I will discuss the truth of marine debris in tomorrow’s post, because as per this article, it is a rather timely topic! Here is a picture of me petting a dog shark at the zoo, which speaks to my utter LOVE of our fine finned fellas!



AND, I have updates on PET thermoform recycling as per a colleague who attended Walmart Canada’s SVN meeting today. EXCITING!

In early June I was contacted by the editor of Plastics Business Magazine, which is a quarterly publication for plastics processors supported by the Manufacturers Association of Plastics Processors. She found me through Twitter, compliments of the Packaging Diva, who is a super successful independent packaging professional with like thousands of Twitter followers—that’s right, thousands. Anyway, the editor was looking for a packaging converter with a bit of sustainability know-how to write an article on sustainable packaging choices, specifically geared towards plastics molders, and asked me as per the Diva’s suggestion! Thanks ladies!

The editor explained that the magazine is targeted to upper-level executives/management operations staff, providing industry trends, strategies, etc. Because a lot of blow molders are involved in some type of post-mold packaging for their customers, she thought it was important to address sustainable packaging options, as this is obviously a trend with some staying power.

AND she gave me 1,500 words, which is by far the most space I have gotten in a print publication EVER, yippee!

Check out my first draft below. It is a bit academic, but I didn’t know how else to handle such a complicated topic as sustainable packaging in causal discourse.

It Aint Easy Being Green

Chandler Slavin, Sustainability Coordinator, Dordan Manufacturing Co. Inc.

“Sustainability” is a concept commonly defined as development that “meets the needs of the present without compromising the ability of future generations to meet their own needs.” Since the early nineties, “sustainability” as concept has been integrated into how we understand different process of production and consumption, products and services.

As the Sustainability Coordinator of a medium-sized family owned and operated plastic thermoforming company, I believe my employment speaks to the extent to which “sustainability” has percolated industry. By taking an informed, systems-based approach to sustainability, I believe plastic processors can develop truly sustainable packaging options for their customers. What follows is a discussion of some of the tools, materials and resources available to those that wish to embark on the journey towards sustainable packaging. It is important to understand, however, that there is no “silver bullet” when discussing sustainability; compromise is required whenever assessing how certain materials or processes will inform the overall environmental and economic performance of a given product or service.

Life cycle analysis is a popular approach to understanding the environmental requirements of different products and services. By considering the entire life cycle of product—from material extraction to production, distribution, and end of life—one can begin to understand its sustainability profile. This type of assessment provides quantified, scientific data, which can be used to facilitate sustainability improvements across the supply chain. Discussion of the Sustainable Packaging Coalition’s life-cycle based, comparative packaging assessment software COMPASS will make clear the importance of LCA and how such intelligence can aid in sustainability improvements in packaging systems.

COMPASS s a design-phase web application that provides comparative environmental profiles of packaging alternatives based on life cycle assessment metrics and design attributes. Created by the Sustainable Packaging Coalition (hereafter, SPC)—an industry-working group dedicated to a more environmentally robust vision for packaging—this tool provides the environmental data needed to make informed packaging design decisions early in the developmental process. COMPASS assess packages on resource consumption (fossil fuel, water, biotic resource, and mineral), emissions (greenhouse gas, human impacts, aquatic toxicity, and eutrophication), and attributes such as material health, recycled or virgin content, sourcing, and solid waste.

Dordan began its subscription to COMPASS in 2010 in response to inquiries from clients into the sustainability of one material vs. another, one design vs. another, etc. Because COMPASS contains life cycle impact assessment data (LCIA) from raw material sourcing/extraction, packaging material manufacture, conversion, distribution and end of life, it details the life cycle impacts of different packaging systems in a comparative format; this allows the practitioner to understand the environmental performance of package A vs. package B, which allows for informed design decisions that results in quantified marketing claims.

To utilize COMPASS, one needs the following information: The weight of the various packaging material constituents of the primary and secondary packaging for the existing and proposed packaging; the conversion process i.e. calendaring with paper cutting vs. thermoforming; and, the data set i.e. US vs. EU vs. CA (end of life data is geographically specific). COMPASS data output consists of colored bar graphs corresponding to the existing and proposed designs, indicating the emissions generated and resources consumed as listed above.

COMPASS was created by stakeholders in industry, academia, NGOs and environmental organizations and funded in part by the US EPA. The LCIA data is taken from the two public life cycle databases available, the US Life Cycle Inventory Database and Ecoinvent, a Swiss life cycle database. This tool should be incorporated into the package development process in order to facilitate more sustainable designs that allows for informed environmental marketing claims. Examples of claims Dordan has made as result of COMPASS utilization includes: “25% reduction in GHG equivalents emitted throughout life cycle when compared with previous package” or, “40% reduction in biotic, mineral, and water resources consumed when compared with previous package.”

In addition to investing in a life cycle based, systems approach to packaging sustainability as manifest through subscription to COMPASS, it is important to invest in industry-specific sustainability R&D. Because each industry is unique in its demands and applications, it is difficult to speculate on what type of sustainability service will resonate best with each demographic. As thin-gauge thermoformers, Dordan found that “bio-plastics” were something in need of investigation because of their feedstock/end of life sustainability implications. By being proactive and sampling each available bio-based/biodegradable/compostable resin as it came to market, Dordan was able to provide its clients with a variety of options that may aid in the attainment of their sustainable packaging goals. Resins sampled include: PLA, PLA & Starch, Cellulous Acetate, PHA, TerraPET, Aeris InCycle. A comparative spec sheet detailing each resins’ physical properties, environmental profiles and cost as understood through density and yield was provided alongside the thermoformed samples, allowing for a holistic representation of this new class of resins.

Don’t let your efforts stop with industry-specific sustainability R&D, however: sustainability is a complicated concept and one that requires full time investigation and participation. In order for plastics processors to capitalize on packaging sustainability in the context of environmental and economic savings, it is helpful to divert resources to sustainability education. Dordan began its sustainability education by joining the SPC, which offered a variety of research crucial to discussions of sustainability. Research available includes: Environmental Technical Briefs of Common Packaging Materials, Sustainable Packaging Indictors and Metrics, Design Guidelines for Sustainable Packaging, Guide to Packaging Material Flows and Terminology, Compostable Packaging Survey, etc.

In joining an industry alliance dedicated to developing more sustainable packaging systems, Dordan was introduced to all the issues that concerned not only the thermoforming but also larger packaging industry; in doing so, it illuminated the obstacles faced and the opportunities available. A discussion of how Dordan developed a clamshell recycling initiative based on insights generated from SPC participation will make clear what is encouraged with sustainability education.

At Dordan’s first SPC meeting it became clear that very few types of consumer product packaging is recycled as per the FTC Green Guides’ definition. Upon this discovery, Dordan aggressively began investigating why thermoformed packaging, like the clamshells and blisters it manufacturers, is not recycled in 60% or more American communities; therefore, couldn’t be considered recyclable. After performing extensive research in this area, I was invited to be the co-lead of Walmart Canada’s PET Subcommittee of the Material Optimization Committee; this looked to increase the diversion rate of PET packaging—bottle and thermoform grade—post consumer. My involvement with stakeholders in PET recovery prompted multiple speaking invitations, allowing Dordan to achieve industry thought leadership status. In investigating issues pertinent to the sustainability of our industry, in this case recycling, Dordan was able to add to the constantly evolving dialogue around sustainability; this not only increased Dordan’s exposure within the industry, but allowed for said exposure to be one of genuine commitment to the sustainability of the thermoforming industry.

I was approached to write an article detailing what sustainable packaging is. According to the SPC, sustainable packaging: meets market criteria for both performance and cost; is sourced, manufactured, transported, and recycled using renewable energy; is manufactured using clean production technologies and best practices; is made from materials healthy in all probable end of life scenarios; is physically designed to optimize materials and energy; and, is effectively recovered and utilized in biological and/or industrial closed loop cycles. While this definition is conceptual correct, I argue that it does not reflect the current reality of sustainable packaging: all commodities consume resources and produce waste during production, distribution, and at end of life. Our jobs as packaging professionals, therefore, is to educate ourselves about the trends, terminology, materials and tools available, so we can work towards achieving our definition of sustainable packaging. Only through education, supply chain collaboration and industry initiatives can we begin to develop truly sustainable packaging systems that meet the needs of the present without compromising the ability of future generations to meet their own needs.

Read More

Recycling, Recycling, and Mushrooms!

Posted by Chandler Slavin on Oct 16, 2012 5:42:00 PM

Helllllloooooo my long lost packaging and sustainability friends! Oh how I have missed you!

Last week’s trip was a success! We had a bunch of normal sales thingamajigs, and while on the east coast, I visited two of my favorite sustainable packaging companies: Ecovative Design and TerraCycle! 

As described in April 21st’s post, Ecovative “grows” EPS-like material out of agricultural waste, using mycelium as the “glue” that holds the substrates together. They make everything from packaging materials to insulation to consumer products, like candles and ducks! Here is Myco the duck, courtesy of Ecovative, ha!



Anyway, their facility is super cool and the options are endless with how this new material can be utilized in the market. Check out their website here.

Next we saw TerraCycle, which is based in Trenton, New Jersey. Here are two photos of the office space, mostly assembled from refurbished waste. Cool!





And as previously articulated, TerraCycle partners with brands to re/upcycle hard-to-recycle branded packaging, like Cliff Bar wrappers, Capri-Sun juice pouches, and so on. By setting up collection sites across America and the world—called brigades—TerraCycle is able to collect the quantity necessary to economically justify the reprocessing of it. While everything technically is recyclable, the costs of collection (curb side vs. drop off vs. deposits) and sortation (single stream vs. comingled vs. manual/automated sorting technologies) for multi-material packaging usually exceeds the cost of virgin material/packaging production; this results in the likelihood that said packaging is not being recycled in most American communities. When brands partner with TerraCycle, however, they fund the shipment of the hard-to-recycle post consumer collected packaging to a TerraCycle facility, where it stays until it is re/upcycled into new products/packaging/material. Part of the fee for partnering with TerraCycle also goes into R&D to better understand how to get the most value out of the collected “waste” and PR, so that the partnered brands receive the marketing collateral inherent in such a warm and fuzzy initiative.

Check out their website here.

We went to TerraCycle to see if there would be any application for our two companies to play together. As those who follow my blog know, I have been working on a clamshell recycling initiative for almost two years. While I have focused mostly on a very macroscopic, infastructural approach to recycling, that is, working within the existing tax-funded waste management hierarchy of specs, bales, sorting and so on, I thought I would also investigate a more privatized approach in hopes that the reality of recycling clamshell packaging would be more aggressively pursued. I will keep you posted!

That night I attended a fiesta at TerraCycle CEO Tom Szaky’s house and being that it was “International Week” at Terracycle, which means all the international TerraCycle offices were in Trenton, I got to meet environmentally conscious people from all over the world! It was so cool!

And on the note of recycling, Dordan CEO Daniel Slavin was quoted in not one but TWO PlasticsNews articles! The first, “ Recyclers See Hope in Third Recycling Stream,” discusses the potential of increasing the supply of post consumer resins available for remanufacture; the second, “ Consolidation Ahead for PET Recyclers?” discusses the market realities of PET recycling.

Neato! We are making progress!

Read More

GO BLACK HAWKSSSSSS

Posted by Chandler Slavin on Oct 16, 2012 2:41:00 PM

Happy Monday Funday!!!

I have returned from my travels. GO BLACK HAWKSSSSSS!!!!!!!!!

While I will fill you in on what I learned in tomorrow’s post (busy day!), I thought I would include a response to my greenerpackage.com post. Check it out (notice the “anonymous”…)

June 9, 2010, Anonymous (not verified) wrote:

Chandler - One point that can't be argued. Packaging from trees is a sustainable option. Packaging from oil (like plastic films) is not - once its pumped out and converted into film products, there will be no more. It would be ideal to compare apples to apples and determine which causes less harm to the planet, however, the opportunity to replant trees and convert paper back into usable pulp is an obvious advantage. And the article makes a solid point that regardless of what might be possible for recycling films, consumers or municipalities rarely have the facilities for taking advantages of the possiblities of recycled film products.

June 11, 2010, Chandler Slavin wrote:

Thank you for your comments and I understand your perspective; however, I am a little confused by this statement: “Packaging from oil (like plastic films) is not [sustainable] - once it’s pumped out and converted into film products, there will be no more.” Are you simply making the argument that paper is sustainable because it comes from a renewable resource while plastic is not because it comes from fossil fuel, which is ever depleting, as dramatically illustrated by the tragic Gluf Coast Spill? If so, that argument is acceptable, but very one dimensional, in my opinion. The reason I feel that this argument is sub par is because it only highlights the different feedstocks used in the production of fiber-based packaging materials or fossil-fuel ones; what about the energy required to convert this feestock into its end-product, that is, paper or plastic? What about the resources consumed in this converstion process; the GHG equivalents emitted therefrom, the inks, laminates, or chemicals added, etc.? I guess the whole point of my post was that to view “sustainability” from one metric, be it renewable versus unrenewable feedstock, is unacceptable in trying to quantify the overall burden a specific packaging material has on the environment.

As an aside, the point about the complexities of recycling plastic packaging is appropriate; with the exception of PET bottles, the rates of recycling plastic packaging in the States is very low. However, Japan, the UK, Belguim, Germany, and many others have very high diversion rates for plastic packaging post-consumer, usually with the aid of waste-to-energy technologies. Because we live in a global market, I am sure that the products of a large CPG company, like Kodak, end up on many international shelves; therefore, the probability that the packaging will or will not end up in a landfill is constituent on the region in which it is distributed. Consequentially, it is difficult to speculate on how much packaging material a company diverts from the landfill by switching from one material to another without specifying what geographical region said packaging material resides in.

In addition, there is a lot of interest in diverting PET thermoforms from the waste stream, as there is an every growing demand for this recyclate. Many companies are now investing in the sorting and cleaning technologies necessary to reprocess these packages with PET bottles to remanufacture into new packages or products. Hence, it is only a matter of time until plastic packaging begings to be recovered post-consumer because of the inherent value of the recyclate.

Thank you for your comments; it is always good to move the dialogue forward!

Mahahahahahahhahaha. See you tomorrow!

Read More

Bio-based resin report!

Posted by Chandler Slavin on Oct 16, 2012 10:58:00 AM

Hello world! Today is officially the most beautiful day—the sun is shining and the weather is sweet. If I only I weren’t stuck in a cubicle…

Soooooo because I have had so many of Dordan's customers ask us about bio-based resins, I decided to compile a brief report, which details the various environmental ramifications one must consider when discussing bio-based plastics. Soon this report will be accessible on our website but because you are all so special, I have attached it below here. A sneak peak, per se. Wow I am a nerd.

Enjoy!

Bio-Based Resins: Environmental Considerations

Biodegradability is an end of life option that allows one to harness the power of microorganisms present in a selected disposal environment to completely remove plastic products designed for biodegradability from the environmental compartment via the microbial food chain in a timely, safe, and efficacious manner.[1]

Designing plastics that can be completely consumed by microorganisms present in the disposal environment in a short time frame can be a safe and environmentally responsible approach for the end-of-life management of single use, disposable packaging.[2] That being said, when considering any bio-based resin, there are some environmental considerations one must take into account. These include: end-of-life management; complete biodegradation,; its agriculturally-based feedstock; and, the energy required and the greenhouse gasses emitted during production.??

Before I expand on these concepts below, let us quickly discuss the biological processes that degradable plastics endure during biodegradation.

Microorganisms utilize carbon product to extract chemical energy for their life processes. They do so by:
    1. Breaking the material (carbohydrates, carbon product) into small molecules by secreting enzymes or the environment does it.
    2. Transporting the small molecules inside the microorganisms cell.
    3. Oxidizing the small molecules (again inside the cell) to CO2 and water, and releasing energy that is utilized by the microorganism for its life processes in a complex biochemical process involving participation of three metabolically interrelated processes. [3]
If bio-based plastic packaging harnesses microbes to completely utilize the carbon substrate and remove it from the environmental compartment, entering into the microbial food chain, then biodegradability is a good end of life option for single use disposable packaging.

End-of-life management considerations:

Because biodegradation is an end of life option that harnesses microorganisms present in the selected disposal environment, one must clearly identify the ‘disposal environment’ when discussing the biodegradability of a bio-based resin: examples include biodegradability under composting conditions, under soil conditions, under anaerobic conditions (anaerobic digestors, landfills), or marine conditions. Most bio-based resins used in packaging applications are designed to biodegrade in an industrial composting facility and one should require some type of certification or standard from material suppliers, ensuring compostability.

Unfortunately, little research has been done on how many industrial composting facilities exist in the United States and how bio-based plastic packaging impacts the integrity of the compost. However, the Sustainable Packaging Coalition did perform a survey of 40 composting facilities in the U.S., which provides some insight. According to their research, 36 of the 40 facilities surveyed accept compostable packaging. These facilities reported no negative impact of including bio-based plastic packaging in the compost. Of the 4 facilities that do not accept compostable packaging, 3 are taking certain packaging on a pilot basis and are considering accepting compostable packaging in the future. Of the facilities surveyed, 67.5% require some kind of certification of compostability i.e. ASTM, BPI, etc.

In addition, because value for composters is found in organic waste, I assume most facilities would not accept bio-based plastic packaging for non-food applications because the lack of associated food waste and therefore value. In other words, as Susan Thoman of Cedar Grove Composting articulated in her presentation at the spring SPC meeting, composters only want compostable food packaging because the associated food waste adds value to the compost whereas the compostable packaging has no value, positive or negative, to the integrity of the compost product.?

It is also important to note that because there are so few industrial composting facilities available, the likelihood that your bio-based plastic packaging will find its way to its intended end of life management environment is rare. While the idea of biodegradation and compostability for plastic packaging may resonate with consumers, the industrial composting infrastructure is in its infancy and requires a considerable amount of investment in order to develop to the point where it would be an effective and economical option to manage plastic packaging waste post consumer.

Complete biodegradability considerations:

A number of polymers in the market are designed to degradable i.e. they fragment into smaller pieces and may degrade to residues invisible to the naked eye. While it is assumed that the breakdown products will eventually biodegrade there is no data to document complete biodegradability within a reasonably short time period (e.g. a single growing season/one year). Hence hydrophobic, high surface area plastic residues may migrate into water and other compartments of the ecosystem.[4]

In a recent Science article Thompson et al. (2004) reported that plastic debris around the globe can erode (degrade) away and end up as microscopic granular or fiber-like fragments, and these fragments have been steadily accumulating in the oceans. Their experiments show that marine animals consume microscopic bits of plastic, as seen in the digestive tract of an amphipod.

The Algalita Marine Research Foundation[5] report that degraded plastic residues can attract and hold hydrophobic elements like PCB and DDT up to one million times background levels. The PCB’s and DDT’s are at background levels in soil and diluted our so as to not pose significant risk. However, degradable plastic residues with these high surface areas concentrate these chemicals, resulting in a toxic legacy in a form that may pose risks to the environment.

Therefore, designing degradable plastics without ensuring that the degraded fragments are completely assimilated by the microbial populations in the disposal infrastructure in a short time period has the potential to harm the environment more that if it was not made to degrade.

Agriculturally-based feedstock considerations:

Most commercially available bio-based resins are produced from sugar or starch derived from food crops such as corn and sugarcane.[6]Over the past few years, the use of food crops to produce biofuels has become highly controversial; the same may happen with bio-based resins. However, this is only if the scale of bio-based polymer production grows. According to Telles VP Findlen, “If the bioplastics industry grows to be 10% of the traditional plastics industry, then around 100 billion pounds of starch will be necessary, and there is no question that that will have an effect on agricultural commodities.”[7]

This sentiment is echoed by Jason Clay of the World Wild Life Fund. Because sugar is the most productive food crop[8] Clay explained, it makes an ideal feedstock for bio-based resin production; however, if all Bio-PE and Bio-PET came from sugarcane, we would need 2.5 times as much land in sugarcane. Unfortunately, this can not be done sustainably because, according to the Living Planet Report,[9] our current demand for the Earth’s resources is 1.25 times what the planet can sustain.[10] Put another way, on September 25th of this year our resource use surpassed what is sustainable. What this would mean as a financial issue is that we are living off our principle.[11]

Therefore, when considering bio-based resins, one should take into consideration the feedstock from which it is derived and the various environmental requirements that go into procuring said feedstock. While the current production of bio-based resins is not to scale to compete with sugarcane production for food, it is important to understand the environmental and social ramifications of sourcing materials from agriculturally based products.

Energy requirements and fossil fuel consumption of production:

Obviously sourcing plastics from bio-based resources as opposed to fossil fuel is an intriguing option for those looking to reduce the burden of packaging on the environment. However, if the energy required to produce bio-based plastics exceeds the energy consumed in the production of traditional resins, then the sustainability profile of bio-based plastics can be compromised.

When bio-based plastics first became commercially available, the processing technologies were not developed to the point where producing plastics from bio-based sources consumed less energy than producing traditional, fossil-fuel based plastics. However, the bio plastics industry has dramatically evolved and is now able to produce certain bio-based resins with less energy when compared with traditional resins. Natureworks Ingeo PLA (2005), for instance, is processed in such a way that it actually consumes less energy and emits fewer greenhouse gas equivalents during production when compared with traditional, fossil-fuel based resins.[12]

The Institute for Energy and Environmental Research (IFEU), Heidelberg, Germany, conducted the head-to-head lifecycle comparison on more than 40 different combinations of clamshell packaging made from Ingeo PLA, PET and rPET. Both PLA and rPET clamshells outperformed PET packaging in terms of lower overall greenhouse gas emissions and lower overall energy consumed and PLA exceeded rPET in its environmental performance.

According to the study, clamshell packaging consisting of 100 percent rPET emitted 62.7 kilograms of C02 equivalents per 1,000 clamshells over its complete life cycle. PLA clamshells emitted even less, with 61.7 kilograms C02 equivalents per 1,000 clamshells. Energy consumed over the lifecycle for 100 percent rPET clamshells was 0.88 GJ. This compared to o.72 GJ for the Ingeo 2005 resin, which is an 18% reduction in energy consumed.

Taken together, one would assume that the 2005 Ingeo PLA is a more sustainable option than traditional plastics, as manifest through this study. However, it is important to take into account the other dimensions discussed above, such as end of life management, complete biodegradation, and sustainable sourcing. By understanding the advantages and disadvantages of bio-based resins from an environmental perspective, packaging professionals can make informed material selections and truly comprehend the ecological ramifications of their packaging selections and designs.


[1] Ramani Narayan, “Biodegradability…” Bioplastics Magazine, Jan. 2009. Narayan is a professor from the Department of Chemical Engineering and Materials Science at Michigan State University.

[2] Ibid.

[3] Ibid.

[4] Ibid.

[5] See www.algalita.org/pelagic_plastic.html.

[6] Jon Evans, “Bioplastics get Growing,” Plastics Engineering, Feb. 2010, www.4spe.org, p. 19.

[7] Ibid, p. 19.

[8] 1-2 orders of magnitude more calories per ha than any other food crop. Information taken from Jason Clay’s presentation, “Biomaterial Procurement: Selected Resources,” at the Sustainable Packaging Coalition’s spring meeting in Boston.

[9] The Living Plant Report is a biannual analysis of the carrying capacity of the globe compared with resource consumption: Population x consumption > planet.

[10] Clay, SPC spring meeting presentation.

[11] Ibid.

[12] M. Patel, R.Narayan in Natural Fibers, Biopolymers and Biocomposites.

Read More

SUBSCRIBE TO OUR BLOG:

LATEST POSTS: